
陈俊仕
cjuns@ustc.edu.cn

2024 Fall

计算机科学与技术学院
School of Computer Science and Technology

计算系统概论A
Introduction to Computing Systems

（CS1002A.03)

Chapter 2
Bits, Data Types, and Operations

Previously: from mechanical computer to electronic computer

Charles Babbage,
1791 – 1871,England

Turing Machine,
1936

Eckert(24) and Mauchly(36)

1832,2002,2008
The Babbage Difference
Engine, 17 years, 25,000
parts, 5ton, cost: £17,470 1946

Alan
Turing(24)

2024/9/13 2

Previously： First computer vs. First microprocessor chip

1946，ENIAC(Electrical Numerical
Integrator And Calculator)

l 18000 vacuum tubes
l 1500 relays
l 174 KW
l 30 tons
l 1800 sq. ft. footprint
l Clock: 100kHz
l RAM: ~230bytes
l IO: punched card

1971, Intel 4004
− 10 micron process，

NMOS-Only Logic
− 2,250 transistors

− 3cmx4cm die

− 4-bit bus

− Performance < 0.1 MIPS
− 640 bytes of addressable

Memory

− 740 KHz

After 25 years

2024/9/13 3

1971, Intel 4004
l 10 micron process
l 2,300 transistors
l 3x4 mm die
l 4-bit bus
l 640 bytes of addressable
Memory

l 750 KHz

2000, Intel Pentium IV
l Issues up to 5 uOPs per cycle
l MMX, SSE, and SSE2
l 0.18 micron process
l 42 million transistors
l 217 mm die

l 64-bit bus
l 8KB D-cache, 12KB op trace cache

(I-cache), 256KB L2 cache
l 1.4 GHz

Previously： Thirty years after the first microprocessor chip was born

Performance improved 5000x:
smaller, faster, cheaper

After 30 years

2024/9/13 4

Previously： State-Of-The-Art Microprocessor Chips

2024/9/13 5

POWER

X86

MIPSARM

高端服务器

PC & 服务器

嵌入式/
移动/消费

POWER PA-RISC

SPARC

Itanium

Moto
68K

X86 MIPS

PPC

ARM

Z

DSP

NP

完全开放，生态良好

众核

异构

融合
学习ARM，谋求复生

开放

封闭架构

内核数大量增加，处理器
互联

CPU+GPU+FPGA

内存体系重构，CPU/内存
深度融合，内存更贴近计算

过去：架构众多，百花齐放 现在：生态成熟，架构垄断 未来：摩尔定律失效，寻求多方向突破

Previously： 人类如何实现从物理设备到问题求解的？

差距太大，
一步无法跨越！

也有例外，
例如罗盘

2024/9/13 6

Application

Physics

Application

Previously：Many Choices at Each Level

7

Solve a system of equations

Gaussian
elimination

Jacobi
iterationRed-black SOR Multigrid

Intel x86Sun SPARC IBM PowerPC

Pentium 4 Core 2 Duo AMD Athlon X2

Ripple-carry adder Carry-lookahead adder

Static CMOS Dynamic CMOS Nanomechanical

Algorithm and Data Structure

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Electronic Devices

Programming Language/Compiler

Analog/Digital Circuits

Physics

Windows Linux MacOS Android

FORTRAN C C++ Python Java

Loongson

Previously: Abstraction helps us Manage Complexity

Algorithm and Data Structure

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Electronic Devices

Programming Language/Compiler

Analog/Digital Circuits

Physics

Application

USTC Courses

集成电路

数字逻辑

操作系统/虚拟机

算法基础/数据结构
程序设计/编译技术

微电子

计算机组成

需要一门
贯通课程，
帮助学生
从底层物
理到高层
应用，整
体上理解
计算机系
统。

从广义上讲，计算机系统结构是抽象层次的设计，它允许我们
使用可用的制造技术有效地实现信息处理应用程序。

2024/9/13 8

高性能计算学习路径

I. 基础知识学习
l数学基础

—线性代数、微积分、概率论 …
l计算机科学基础

—C/C++/Fortran/Python/R等编程语言
—计算机体系结构、数据结构和算法、操作系统、
机器学习等

II. 高性能计算
l高性能计算架构

—多核处理器、GPU等高性能计算硬件架构
l并行编程模型

—OpenMP、MPI、CUDA
l性能分析与优化技术

—并行算法优化、内存优化、向量化等

III. 领域应用计算方法
l领域应用的数值计算方法

—计算流体力学、分子动力学、天体物理、分子
生物学、量子计算、…

l领域应用的常用软件和并行计算方法

n 参考资料：
l 请问高性能计算的学习路线应该是怎样的？ -
https://www.zhihu.com/question/33576416

l Introduction to Parallel Computing
Tutorial -
https://hpc.llnl.gov/documentation/tutoria
ls/introduction-parallel-computing-
tutorial

l 高性能计算学习路线 -
https://heptagonhust.github.io/HPC-
roadmap/

2024/9/13 9

https://www.zhihu.com/question/33576416
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://heptagonhust.github.io/HPC-roadmap/

Today

Transistor Physical Layout

Scheme for
Representing Information

Register Transfer Level (RTL) Design
1K~10K Cells/Module

(100K Devices)

ALU Full Adder

Gete Level Design

Circuit Level Design
（Transistor Level Design）

(2~8 Devices/Gate)

Register Transfer Level (RTL) Design
2~16 Gates/Cell
(16~64 Devices)

Clk Register

+

Cout S

A B Cin

Integrated Circuit Design
100 Modules/ IC

0.25M~20G Devices

We are
here

2024/9/13 10

Outline

How do we represent information in a
computer?1

Integer Data Types2

2’Complement Integers3

Binary-Decimal Conversion4

Operations on Bits: Arithmetic and Logical5

Other Representation6

Outline

How do we represent information in a
computer?1

Integer Data Types2

2’Complement Integers3

Binary-Decimal Conversion4

Operations on Bits: Arithmetic and Logical5

Other Representation6

5 Senses of Human

nSight

lImage,picture,photo,vedio,…

nHearing

lSound,voice,speech,music,…

nTouch

lShape,soft,hard,hurt,numb,…

nTaste

lSour,sweet,bitter,spicy,salty,…

nSmell

lSweet,smelly,… to record by number, data, words,
symbols, text, language, ……

2024/9/13 13

What kinds of information do we need to represent?

n Kinds of Information
l Numbers – natural number, integers, positive/negative integers,
integers/decimals, real, complex, rational, irrational, signed,

unsigned, floating point, …
l Text – characters, strings, …
l Logical – true, false
l Images – pixels, colors, shapes, …

l Sound – sound of talk, sound of sing, …
l Video – a series of images
l Instructions – plus(+), minus(-), times（*）,divided by(/) , …
l …

n Data type: representation and operations within the computer

We’ll start with numbers…

2024/9/13 14

Number Notation

Counting stone(石头）

Counting rod(算筹) Knotting(结绳）
Inscriptions on oracle bones

（甲骨文上刻字）

2024/9/13 15

Number Notation

n Non-positional notation(like to counting rod)
l Could represent a number (“5”) with a string of ones (“11111”)

problems?

V
11111

2024/9/13 16

5

Number Notation

n Weighted positional notation
ldecimal numbers(denary numbers): “329”
l“3” is worth 300, because of its position(with place value 100),
l while “9” is only worth 9, because of its position(with place value

1)

329

102 101 100

3x100 + 2x10 + 9x1 = 329

Denary numbers
base is 10,
place value according its position

2024/9/13 17

Denary numbers - base ten

n(5346)10

5346
Available digit 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Place value 103=1000 102=100 101=10 100=1

Digit 5 3 4 6

Product of digit
and place value 5x1000=5000 3x100=300 4x10=40 6x1=6

2024/9/13 18

(5346)10 = 5x1000+3x100+4x10+6x1

How do we represent data in a computer?

2024/9/13 20

Great Idea from Ancient Chinese Philosophy

All things come into being, all things come into nothing

天下万物生于有, 有生于无 ——《老子·四十章》

《易经》

太极生两仪，
两仪生四象，
四象生八卦，
八卦演万物。

How do we represent data in a computer?

nAt the lowest level, a computer is an electronic machine.
lworks by controlling the flow of electrons

nEasy to recognize two conditions:

lpresence of a voltage – we’ll call this state “1”

labsence of a voltage – we’ll call this state “0”

nCould base state on value of voltage, but control and detection circuits

more complex.

lcompare turning on a light switch to measuring or regulating voltage

nWe’ll see examples of these circuits in the next chapter.

2024/9/13 21

Simple Switch Circuit

Switch open:
lNo current through circuit
lLight is off
lVout is +2.9V

Switch closed:
l Short circuit across switch
l Current flows

l Light is on
l Vout is 0V

Switch-based circuits can easily represent two states:
on/off, open/closed, voltage/no voltage.

2024/9/13 22

Computer is a binary digital system

Binary (base two) system:
• has two states: 0 and 1

Digital system:
• finite number of symbols

Basic unit of information is the binary digit, or bit.
Values with more than two states require multiple bits.

lA collection of two bits has four possible states:
00, 01, 10, 11

lA collection of three bits has eight possible states:
000, 001, 010, 011, 100, 101, 110, 111

lA collection of n bits has 2n possible states.

2024/9/13 23

N-type MOS Transistor

nMOS = Metal Oxide Semiconductor
ltwo types: N-type and P-type

nN-type

lwhen Gate has positive voltage,

short circuit between #1 and #2

(switch closed)

lwhen Gate has zero voltage,

open circuit between #1 and #2

(switch open)

Gate = 1

Gate = 0

Terminal #2 must be
connected to GND (0V).

2024/9/13 24

P-type MOS Transistor

nP-type is complementary to N-type

lwhen Gate has positive voltage,

open circuit between #1 and #2

(switch open)

lwhen Gate has zero voltage,

short circuit between #1 and #2

(switch closed)

Gate = 1

Gate = 0

Terminal #1 must be
connected to +2.9V.

2024/9/13 25

Logic Gates

nUse switch behavior of MOS transistors to implement logical functions: AND, OR,

NOT.

nDigital symbols:
lrecall that we assign a range of analog voltages to each
digital (logic) symbol

lassignment of voltage ranges depends on electrical properties
of transistors being used

ltypical values for "1": +5V, +3.3V, +2.9V, +1.1V for purposes
of illustration, we'll use +2.9V

2024/9/13 26

Binary numbers - base two

n(101110)2 10 1110
Available digit 0, 1
Place value 25=32 24=16 23=8 22=4 21=2 20=1
Digit 1 0 1 1 1 0
Product of digit and
place value 32 0 8 4 2 0

(101110)2 =1x32+0x16+1x8+1x4+1x2+0x1 =(46)10

(11110100)2 = 1x128+1x64+1x32+1x16+0x8+1x4+0x2+0x1=(244)10

(2790)10 = (?)2

(5346)10 = (?)2

2024/9/13 27

Within the Computer: Everything is a Number.

n Numbers within the Computer
l Base 10 #s: Dec(imal)

-Digits: 0,1,2,3,4,5,6,7,8,9

l Base 2 #s: Bin(ary)
-Digits: 0,1

l Base 8 #s: Oct(al)
-Digits: 0,1,2,3,4,5,6,7

l Base 16 #s: Hex(adecimal)
-Digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Dec(imal) Hex(adecimal) Oct(al) Bin(ary)

00 0 00 0000

01 1 01 0001

02 2 02 0010

03 3 03 0011

04 4 04 0100

05 5 05 0101

06 6 06 0110

07 7 07 0111

08 8 10 1000

09 9 11 1001

10 A 12 1010

11 B 13 1011

12 C 14 1100

13 D 15 1101

14 E 16 1110

15 F 17 1111

2024/9/13 28

Hexadecimal Notation

nIt is often convenient to write binary (base-2) numbers
as hexadecimal (base-16) numbers instead.

l fewer digits -- four bits per hex digit
l less error prone -- easy to corrupt long string of 1’s and 0’s

Binary Hex Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7

Binary Hex Decimal
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

2024/9/13 29

011101010001111010011010111

2024/9/13 30

Converting from Binary to Hexadecimal

nEvery four bits is a hex digit.
l start grouping from right-hand side

011101010001111010011010111

7D4F8A3

2024/9/13 31

This is not a new machine representation,
just a convenient way to write the number.

BIG IDEA：Bits can represent anything!!!

n Characters?
l 26 letters ⇒ 5 bits (25 = 32)
l upper/lower case + punctuation（符号） ⇒ 7 bits (in 8)(“ASCII”)
l standard code to cover all the world’s languages ⇒ 8,16,32 bits
(“Unicode”) www.unicode.com

n Logical values?
l 0 → False, 1 → True

n colors ?
l Ex: Red(00),Green(01),Blue(11)

n locations / addresses?
n commands?

MEMORIZE: N bits ⇔ at most 2N things

2024/9/13 32

http://www.unicode.com/

Within the Computer: Everything is a Number.

n Bit(BInary digiT)
l 1Bits=2things;
l 2Bits=4things;
l 4Bits=16things;
l 8Bits=256things
l ……

n Byte
l 1Byte=8Bits
l A byte is 8 bits

n But numbers usually stored with a fixed size
l 8-bit bytes;
l 16-bit half words;
l 32-bit words;
l 64-bit double words, ...
l And there are really only two primitive "numbers": 0 and 1 is a "bit"

2024/9/13 33

Outline

How do we represent information in a
computer?1

Integer Data Types2

2’Complement Integers3

Binary-Decimal Conversion4

Operations on Bits: Arithmetic and Logical5

Other Representation6

Unsigned Integers

nWeighted positional notation
llike decimal numbers: “329”
l“3” is worth 300, because of its position, while “9” is only worth 9

329
102 101 100

101
22 21 20

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

most
significant

least
significant

MSB LSB

2024/9/13 35

Unsigned Integers

nAn n-bit unsigned integer represents 2n values: from 0 to 2n-1.

22 21 20

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

2024/9/13 36

Unsigned Binary Arithmetic

nBase-2 addition – just like base-10!
ladd from right to left, propagating carry

10010 10010 1111
+ 1001 + 1011 + 1
11011 11101 10000

10111
+ 111

carry

lSubtraction, multiplication, division,…

2024/9/13 37

Signed Integers

nWith n bits, we have 2n distinct values.
lassign about half to positive integers (1 through 2n-1)
and about half to negative (-2n-1 through -1)

lthat leaves two values: one for 0, and one extra
nPositive integers

ljust like unsigned – zero in Most Significant（MS） bit
00101 = 5

nNegative integers
lsign-magnitude（原码） – set top bit to show negative,
other bits are the same as unsigned
10101 = -5

lone’s complement（反码） – flip every bit to represent negative
11010 = -5

lin either case, MS bit indicates sign: 0=positive, 1=negative

2024/9/13 38

Three representations of signed integers

2024/9/13 39

Representation
Value Represented

Signed
Magnitude

1’s
Complement

2’s
Complement

0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 1 0 2 2 2
0 0 0 1 1 3 3 3
0 0 1 0 0 4 4 4
0 0 1 0 1 5 5 5
0 0 1 1 0 6 6 6
0 0 1 1 1 7 7 7
0 1 0 0 0 8 8 8
0 1 0 0 1 9 9 9
0 1 0 1 0 10 10 10
0 1 0 1 1 11 11 11
0 1 1 0 0 12 12 12
0 1 1 0 1 13 13 13
0 1 1 1 0 14 14 14
0 1 1 1 1 15 15 15

Representation
Value Represented

Signed
Magnitude

1’s
Complement

2’s
Complement

1 0 0 0 0 ―0 ―15 ―16
1 0 0 0 1 ―1 ―14 ―15
1 0 0 1 0 ―2 ―13 ―14
1 0 0 1 1 ―3 ―12 ―13
1 0 1 0 0 ―4 ―11 ―12
1 0 1 0 1 ―5 ―10 ―11
1 0 1 1 0 ―6 ―9 ―10
1 0 1 1 1 ―7 ―8 ―9
1 1 0 0 0 ―8 ―7 ―8
1 1 0 0 1 ―9 ―6 ―7
1 1 0 1 0 ―10 ―5 ―6
1 1 0 1 1 ―11 ―4 ―5
1 1 1 0 0 ―12 ―3 ―4
1 1 1 0 1 ―13 ―2 ―3
1 1 1 1 0 ―14 ―1 ―2
1 1 1 1 1 ―15 ―0 ―1

Signed Magnitude：
5 - 5 = 5 + (-5) =-10

00101 (5)
+ 10101 (-5)

11010 (-10)

00101 (5)
+ 11010 (-5)

11111 (-0)

1’s Complement：
5 - 5 = 5 + (-5) =- 0

Outline

How do we represent information in a
computer?1

Integer Data Types2

2’Complement Integers3

Binary-Decimal Conversion4

Operations on Bits: Arithmetic and Logical5

Other Representation6

Two’s Complement Representation

n If number is positive or zero,
lnormal binary representation, zeroes in upper bit(s)

n If number is negative,
lstart with positive number

lflip every bit (i.e., take the one’s complement)

lthen add one

nThis representation makes the hardware simple!

00101 (5) 01001 (9)
11010 (1’s comp) (1’s comp)

+ 1 + 1
11011 (-5) (-9)

2024/9/13 41

Two’s Complement

n Problems with sign-magnitude and 1’s complement
ltwo representations of zero (+0 and –0)
larithmetic circuits are complex

—How to add two sign-magnitude numbers?
• e.g., try 2 + (-3)

—How to add two one’s complement numbers?
• e.g., try 4 + (-3)

n Two’s complement representation developed to make circuits easy for arithmetic.
lfor each positive number (X), assign value to its negative (-

X),such that X + (-X) = 0 with “normal” addition, ignoring carry
out

00101 (5) 01001 (9)
+ 11011 (-5) + (-9)

00000 (0) 00000 (0)
2024/9/13 42

Two’s Complement Shortcut

nTo take the two’s complement of a number:

lcopy bits from right to left until (and including) the first “1”

lflip remaining bits to the left

011010000 011010000
100101111 (1’s comp)

+ 1
100110000 100110000

(copy)(flip)

2024/9/13 43

Two’s Complement Signed Integers

nMS bit is sign bit – it has weight –2n-1.

nRange of an n-bit number: -2n-1 through 2n-1 – 1.

lThe most negative number (-2n-1) has no positive counterpart.

-23 22 21 20

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3

0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7

-23 22 21 20

1 0 0 0 -8
1 0 0 1 -7
1 0 1 0 -6
1 0 1 1 -5
1 1 0 0 -4
1 1 0 1 -3
1 1 1 0 -2
1 1 1 1 -1

2024/9/13 44

Three representations of signed integers

2024/9/13 45

Representation
Value Represented

Signed
Magnitude

1’s
Complement

2’s
Complement

0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 1 0 2 2 2
0 0 0 1 1 3 3 3
0 0 1 0 0 4 4 4
0 0 1 0 1 5 5 5
0 0 1 1 0 6 6 6
0 0 1 1 1 7 7 7
0 1 0 0 0 8 8 8
0 1 0 0 1 9 9 9
0 1 0 1 0 10 10 10
0 1 0 1 1 11 11 11
0 1 1 0 0 12 12 12
0 1 1 0 1 13 13 13
0 1 1 1 0 14 14 14
0 1 1 1 1 15 15 15

Representation
Value Represented

Signed
Magnitude

1’s
Complement

2’s
Complement

1 0 0 0 0 ―0 ―15 ―16
1 0 0 0 1 ―1 ―14 ―15
1 0 0 1 0 ―2 ―13 ―14
1 0 0 1 1 ―3 ―12 ―13
1 0 1 0 0 ―4 ―11 ―12
1 0 1 0 1 ―5 ―10 ―11
1 0 1 1 0 ―6 ―9 ―10
1 0 1 1 1 ―7 ―8 ―9
1 1 0 0 0 ―8 ―7 ―8
1 1 0 0 1 ―9 ―6 ―7
1 1 0 1 0 ―10 ―5 ―6
1 1 0 1 1 ―11 ―4 ―5
1 1 1 0 0 ―12 ―3 ―4
1 1 1 0 1 ―13 ―2 ―3
1 1 1 1 0 ―14 ―1 ―2
1 1 1 1 1 ―15 ―0 ―1

Signed Magnitude：
5 - 5 = 5 + (-5) =-10

00101 (5)
+ 10101 (-5)

11010 (-10)

2’s Complement：
5 - 5 = 5 + (-5) = 0

00101 (5)
+ 11011 (-5)

00000 (0)

00101 (5)
+ 11010 (-5)

11111 (-0)

1’s Complement：
5 - 5 = 5 + (-5) =- 0

Q&A

nSuppose we had a 5-bit word. What integers can be represented in two’s
complement?
A. -32~+31
B. 0~+31
C. -16~+15
D. -15~+16

nSuppose we had a 8-bit word. What integers can be represented in two’s
complement?

nSuppose we had a 16-bit word. What integers can be represented in two’s
complement?

nSuppose we had a 32-bit word. What integers can be represented in two’s
complement?

Outline

How do we represent information in a
computer?1

Integer Data Types2

2’Complement Integers3

Binary-Decimal Conversion4

Operations on Bits: Arithmetic and Logical5

Other Representation6

Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s complement to get a

positive number.

2. Add powers of 2 that have “1” in the corresponding bit

positions.

3. If original number was negative, add a minus sign.

X = 01101000two

= 26+25+23 = 64+32+8

= 104ten

Assuming 8-bit 2’s complement numbers.

n 2n
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

2024/9/13 48

More Examples

Assuming 8-bit 2’s complement numbers.

X = 00100111two

= 25+22+21+20 = 32+4+2+1

= 39ten

X = 11100110two

-X = 00011010

= 24+23+21 = 16+8+2

= 26ten

X = -26ten

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

2024/9/13 49

Converting Decimal to Binary (2’s C)

First Method: Division
1. Divide by two – remainder is least significant bit.
2. Keep dividing by two until answer is zero, writing

remainders from right to left.
3. Append a zero as the MS bit; if original number negative,

take two’s complement.

X = 104ten 104/2 = 52 r0 bit 0
52/2 = 26 r0 bit 1
26/2 = 13 r0 bit 2
13/2 = 6 r1 bit 3
6/2 = 3 r0 bit 4
3/2 = 1 r1 bit 5

X = 01101000two 1/2 = 0 r1 bit 6

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

2024/9/13 50

Converting Decimal to Binary (2’s C)

Second Method: Subtract Powers of Two
1. Change to positive decimal number.
2. Subtract largest power of two less than or equal to

number.
3. Put a one in the corresponding bit position.
4. Keep subtracting until result is zero.
5. Append a zero as MS bit; if original was negative, take

two’s complement.

X = 104ten 104 - 64 = 40 bit 6
40 - 32 = 8 bit 5

8 - 8 = 0 bit 3
X = 01101000two

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

2024/9/13 51

Outline

How do we represent information in a
computer?1

Integer Data Types2

2’Complement Integers3

Binary-Decimal Conversion4

Operations on Bits: Arithmetic and Logical5

Other Representation6

Operations: Arithmetic and Logical

nRecall: a data type includes representation and operations.

nWe now have a good representation for signed integers, so let’s look at some

arithmetic operations:

lAddition

lSubtraction

lSign Extension ！！！

nWe’ll also look at overflow conditions for addition.

nMultiplication, division, etc., can be built from these basic operations.

nLogical operations are also useful:

lAND，OR，NOT

2024/9/13 53

Addition

nAs we’ve discussed, 2’s comp. addition is just binary addition.

lassume all integers have the same number of bits

lignore carry out

lfor now, assume that sum fits in n-bit 2’s comp. representation

01101000 (104) 11110110 (-10)
+ 11110000 (-16) + (-9)

01011000 (88) (-19)
Assuming 8-bit 2’s complement numbers.

2024/9/13 54

Subtraction

nNegate subtrahend (2nd no.) and add.

lassume all integers have the same number of bits

lignore carry out

lfor now, assume that difference fits in n-bit 2’s comp.

representation

01101000 (104) 11110110 (-10)
- 00010000 (16) - (-9)

01101000 (104) 11110110 (-10)
+ 11110000 (-16) + (9)

01011000 (88) (-1)
Assuming 8-bit 2’s complement numbers.

2024/9/13 55

Sign Extension

nTo add two numbers, we must represent them with the same number of bits.

n If we just pad with zeros on the left:

n Instead, replicate the most significant bit (MSB) -- the sign bit:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 00001100 (12, not -4)

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 11111100 (still -4)

2024/9/13 56

nRecall the represent range of n-bit 2’complement Signed Integers
nFor an n-bit number:

-2n-1 ~ 2n-1 – 1

nCan we use n-bit 2’complement to represent a value larger than 2n-1-1? Or a value
smaller than -2n-1 ?

Overflow

Overflow

nIf operands are too big, then sum cannot be represented as an n-bit 2’s comp
number.

nWe have overflow if:
lsigns of both operands are the same, and
lsign of sum is different.

nAnother test -- easy for hardware:
lcarry into MS bit does not equal carry out

2024/9/13 58

01000 (8) 11000 (-8)
+ 01001 (9) +10111 (-9)
10001 (-15) 01111 (+15)

01000 (8) 11000 (-8)
+01001 (9) +10111 (-9)
10001 (-15) 01111 (+15)

01 10

Logical Operations

nOperations on logical TRUE or FALSE

ltwo states -- takes one bit to represent:

l TRUE=1, FALSE=0

nView n-bit number as a collection of n logical values

loperation applied to each bit independently

A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

A NOT A
0 1
1 0

2024/9/13 59

Examples of Logical Operations

nAND
luseful for clearing bits

—AND with zero = 0

—AND with one = no change

nOR
luseful for setting bits

—OR with zero = no change

—OR with one = 1

nNOT
lunary operation -- one argument

lflips every bit

11000101
AND 00001111

00000101

11000101
OR 00001111

11001111

NOT 11000101
00111010

2024/9/13 60

nHacker's Delight
l by Henry S. Warren, Jr.
l first published in 2002
l fast bit-level and low-level arithmetic algorithms

nBit Twiddling Hacks
l By Sean Eron Anderson
l https://graphics.stanford.edu/~seander/bithacks.html

Hacker’s Delight

61
2024/9/13

https://graphics.stanford.edu/~seander/bithacks.html

Outline

How do we represent information in a
computer?1

Integer Data Types2

2’Complement Integers3

Binary-Decimal Conversion4

Operations on Bits: Arithmetic and Logical5

Other Representation6

Fractions: Fixed-Point

nHow can we represent fractions?
lUse a “binary point” to separate positive
from negative powers of two -- just like “decimal point.”

l2’s comp addition and subtraction still work.
—if binary points are aligned

2024/9/13 63

2-1 = 0.5
2-2 = 0.25
2-3 = 0.125

No new operations -- same as integer arithmetic.

n 2n
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

(40.625)
+ (-1.25)

(39.375)

00101000.101
+ 11111110.110
00100111.011

Fractions: Fixed-Point

nHow can we represent fractions?
lUse a “binary point” to separate positive

from negative powers of two -- just like “decimal point.”
l2’s complement addition and subtraction still work.

—if binary points are aligned
nExample： 5-bit fraction

n A n-bit binary fraction with k fraction bits is equivalent to
the n-bit binary integer divided by 2!

2024/9/13 64

fraction Integer
010.10 2.5 (10/𝟐𝟐) 01010 10

+101.11 -2.25 (-9/𝟐𝟐) + 10111 -9
000.01 0.25 (1/𝟐𝟐) 00001 1

n 2n
-4 0.0625
-3 0.125
-2 0.25
-1 0.5
0 1
1 2
2 4
3 8
4 16
5 32
6 64

Very Large and Very Small Data

nThe LC-3 use the 16bit 2’s complement data type,

nOne bit to identify positive or negative, 15bits to represent the magnitude of the

value. We can express values:

- 215 through 215 –1

(– 32768 through 32767)

How can we represent

very large and very small data?

2024/9/13 65

Very Large and Very Small Data

Large values: 6.023 x 1023 ―― requires 79 bits

Small values: 6.626 x 10-34 ―― requires >110 bits

How can we represent

very large and very small data?

2024/9/13 66

Very Large and Very Small: Floating-Point

Large values: 6.023 x 1023 ―― requires 79 bits
Small values: 6.626 x 10-34 ―― requires >110 bits

Use equivalent of “scientific notation”: F x 2E

Need to represent F (fraction/mantissa), E (exponent), and S(sign).

IEEE 754 Floating-Point Standard (32-bits):

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.0)1(

254exponent1,2fraction.1)1(
126

127exponent

=´´-=

££´´-=
-

-

S

S

N

N

2024/9/13 67

Normalized Form

2024/9/13 68

nSingle-precision IEEE floating point number:

1 01111110 10000000000000000000000

lSign is 1 – number is negative.
lExponent field, unsigned integer, excess code, biased
representations: 01111110 = 126 (decimal).

lFraction is .100000000000… = .5 (decimal).

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75.

sign exponent fraction

𝑁 = −1 !×1. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛×2"#$%&"&'()*+，1 ≤ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ≤ 254
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡: 0𝑏0000_0000 < 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 < 0𝑏1111_1111

Floating Point Example

nExample 2.12

nExample 2.13

0 01111011 000 0000 0000 0000 0000 0000
+ 123 0

𝟏. 𝟎×𝟐𝟏𝟐𝟑$𝟏𝟐𝟕= 𝟐$𝟒 = 𝟏
𝟏𝟔

- 6𝟓
𝟖

- (6+𝟒
𝟖
+ 𝟏

𝟖
)=-110.101

- 1.10101×𝟐𝟐

- 1.10101×𝟐𝟏𝟐𝟗$𝟏𝟐𝟕

1 10000001 101 0100 0000 0000 0000 0000

2024/9/13 692024/9/13 69

Floating Point Example

nExample 2.14

0 10000011 001 0100 0000 0000 0000 0000
+ 1.00101 ×𝟐𝟏𝟑𝟏$𝟏𝟐𝟕=10010.1=18.5

1 10000010 001 0100 0000 0000 0000 0000
- 1.00101 ×𝟐𝟏𝟑𝟎$𝟏𝟐𝟕 =-1001.01=-9.25

0 11111110 111 1111 1111 1111 1111 1111
+ 1.1111… ×𝟐𝟐𝟓𝟒$𝟏𝟐𝟕= 1.1111… ×𝟐𝟏𝟐𝟕 ≈ 𝟐𝟏𝟐𝟖

2024/9/13 702024/9/13 70

Very Small: Floating-Point

2024/9/13 71

nNormalized Form

nThe smallest positive number that can be represented in normalized form
is

N = 1.00000000000000000000000 × 2−126

𝑁 = −1 !×1. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛×2"#$%&"&'()*+，1 ≤ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ≤ 254
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡: 0𝑏0000_0000 < 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 < 0𝑏1111_1111

Very Small: subnormal numbers

2024/9/13 72

nThe largest subnormal number is

N = 0.11111111111111111111111 × 2−126

nThe smallest subnormal number is

N = 0.00000000000000000000001 × 2−126

= 2-23x2−126=2-149

nExample
0 00000000 00001000000000000000000
2-5 x 2-126 = 2-131

𝑁 = −1 !×0. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛×2()*4，𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 0

Infinities

nNormalized Form

nSubnormal numbers:

nSo, what if the exponent is equal to 1111_1111?
lIf the exponent field contains 1111_1111, we use the floating point
data type to represent various things, among them the notion of
infinity.

lInfinity is represented by the exponent field containing all 1s and
the fraction field containing all 0s.

lWe represent positive infinity if the sign bit is 0 and negative
infinity if the sign bit is 1

0exponent,2fraction.0)1(

:

254exponent1,2fraction.1)1(

:

126

127exponent

=´´-=

££´´-=

-

-

S

S

N

numbersSubnormal

N

FromNormalized

𝑁 = −1 !×1. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛×2"#$%&"&'()*+，1 ≤ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ≤ 254
𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡: 0𝑏0000_0000 < 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 < 0𝑏1111_1111

𝑁 = −1 !×0. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛×2()*4，𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 = 0

Floating-Point Operations

nWill regular 2’s complement arithmetic work for Floating Point numbers?

(Hint: In decimal, how do we compute 3.07 x 1012 + 9.11 x 108?)

2024/9/13 742024/9/13 74

Other Data Types

nText strings
lsequence of characters, terminated with NULL (0)
ltypically, no hardware support

n Image
larray of pixels

— monochrome: one bit (1/0 = black/white)
— color: red, green, blue (RGB) components (e.g., 8 bits each)

— other properties: transparency

lhardware support:
— typically none, in general-purpose processors
— MMX -- multiple 8-bit operations on 32-bit word

nSound
lsequence of fixed-point numbers

Within the Computer: Everything is a Number.

2024/9/13 752024/9/13 75

How do computers represent text ? -- ASCII Characters

ASCII: Maps 128 characters to 7-bit code.
lboth printable and non-printable (ESC, DEL, …) characters

00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p
01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q
02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r
03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s
04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t
05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u
06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v
07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w
08 bs 18 can 28 (38 8 48 H 58 X 68 h 78 x
09 ht 19 em 29) 39 9 49 I 59 Y 69 i 79 y
0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z
0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b {
0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |
0d cr 1d gs 2d - 3d = 4d M 5d] 6d m 7d }
0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~
0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del

2024/9/13 76

ASCII（American Standard Code for Information Interchange）

2024/9/13 772024/9/13 77

Interesting Properties of ASCII Code

nWhat is relationship between a decimal digit ('0', '1', …)and its ASCII code?

nWhat is the difference between an upper-case letter ('A', 'B', …) and its

lower-case equivalent ('a', 'b', …)?

nGiven two ASCII characters, how do we tell which comes first in

alphabetical order?

nAre 128 characters enough? (http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

2024/9/13 782024/9/13 78

How do computers represent image ?

nEach image has a resolution and a color depth.
lThe resolution is the number of pixels wide and the number of pixels
high that are used to create the image.

lThe color depth is the number of bits that are used to represent each
color.

nFor example, each color could be represented using 8-bit, 16-bit or 32-bit binary
numbers.

nThe greater the number of bits, the greater the range of colors that can be
represented.

2024/9/13 79

Converting images to binary

n If each pixel is converted to its binary value, a data set such as the following could

be created:

0 0 1 1 1 1 1 0 0
0 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
1 0 0 1 0 1 0 0 1
1 0 0 0 0 0 0 0 1
1 0 1 0 0 0 1 0 1
1 0 0 1 1 1 0 0 1
0 1 0 0 0 0 0 1 0
0 0 1 1 1 1 1 0 0

2024/9/13 80

How do computers represent sound ?

nSound is made up of sound waves. When sound is recorded, this is done at set time
intervals. This process is known as sound sampling :

Time
sample 1 2 3 4 5 6 7 8 9 10 11 12
Sound
value 9 13 9 3.5 4 9 1.5 9 8 5 8 5.5

2024/9/13 81

LC-3 Data Types

nSome data types are supported directly by the instruction set
architecture.

nFor LC-3, there is only one supported data type:
l16-bit 2’s complement signed integer
lOperations: ADD, AND, NOT

nOther data types are supported by interpreting 16-bit values as
logical, text, fixed-point, etc., in the software that we write.

2024/9/13 82

2024/9/13 83

Intel® 64 and IA-32 Architectures
Software Developer’s Manual

Combined Volumes:
1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4

NOTE: This document contains all four volumes of the Intel 64 and IA-32 Architectures Software
Developer's Manual: Basic Architecture, Order Number 253665; Instruction Set Reference A-Z, Order
Number 325383; System Programming Guide, Order Number 325384; Model-Specific Registers, Order
Number 335592. Refer to all four volumes when evaluating your design needs.

Order Number: 325462-084US
June 2024

