ITERFAMIEA

* @ @ é K l* é Introduction to Computing Systems

University of Science and Technolog yofChma (C51002A03)

Bits, Data Types, and Operatjons

e AR ageese | - PP e -

PRIR 1t

cjuns@ustc.edu.cn
2024 Fall

HEMELHH KPR

School of Computer Science and Technology

2024/9/13

Charles Babbage, in
1791 - 1871,England Turing(24)

s Y 3 &
N o Y A = gt ™
1 . |
i
2 e
\ ot
/. in |

1832,2002,2008 Turing Machine,
The Babbage Difference 1936

Engine, 17 years, 25,000

parts, 5ton, cost: £17,470

Previously : First computer vs. First microprocessor chip

1946 , ENIAC(Electrical Numerical 1971, Intel 4004

Integrator And Calculator)
® 18000 vacuum tubes
® 1500 relays

® 174 KW -
® 30 tons After 25 years

® 1800 sqg. ft. footprint -
® Clock: 100kHz
® RAM: ~230bytes -

® I0: punched card —

Replacing a bad tube meant checking among ENTAC's 19,000 possibilities.

2024/9/13

10 micron process,
NMOS-Only Logic

2,250 transistors

- 3cmx4cm die

4-bit bus
Performance < 0.1 MIPS

640 bytes of addressable
Memory

740 KHz

Previously : Thirty years after the first microprocessor chip was born

1971, Intel 4004 2000, Intel Pentium IV

® 10 micron process

® 2,300 transistors ° ss d SSE2

: MMX , E, an E
® 3x4 mm die After 30 years
® 4-bit bus

® Issues up to 5 uOPs per cycle

® 0.18 micron process

® 640 bytes of addressable ® 42 million transistors
Memory ® 217 mm die
W0 K= ® 64-bit bus
® 8KB D-cache, 12KB op trace cache

(I-cache), 256KB L2 cache
® 1.4 GHz

Performance improved 5000x:
smaller, faster, cheaper

2024/9/13 4

Previously : State-Of-The-Art Microprocessor Chips

<> g3
RS 2=
=Y
o PR RIZN , 4B

BEX

A58

=20
PC & RS 28 CPU+GPU+FPGA
__ g
AT S - .
f%ﬁb/li‘éﬁ FIARM, BKREE | RIFHAREM , CPU/MTE
% e REME NEFEEWLLTE
>
3% : BIERE , BT IRTE : 757 | SRIaZElR R3E : BRERKY , IRSH M

2024/9/13

Previously : AZEUN{ISCIN AR IR &3 RREKAZRY ?

[Application]

ZIEAK,
—S Lk !

wAEFI,
f5lanT &

[Physics]

2024/9/13

Previously : Many Choices at Each Level

Application

Y

Y

Algorithm and Data Structure

A

Programming Language/Compiler

y

Y

Operating System/Virtual Machines

Instruction Set Architecture (ISA)

Solve a system of equations

Y

Microarchitecture

Y

Gates/Register-Transfer Level (RTL)

A

Analog/Digital Circuits

I\

h'd

Electronic Devices

I\

Physics

/G‘\

aussian Jacobi

Red-black SOR elimination iteration Multigrid

%N

FORTRAN Cc C++ Python Java

Windows Linux MacOS Android

Sun SPARC Intel x86 IBM PowerPC

s

Pentium 4 Core 2 Duo AMD Athlon X2

o

Ripple-carry adder Carry-lookahead adder

Loongson

“

Static CMOS Dynamic CMOS Nanomechanical

Previously: Abstraction helps us Manage Complexity

USTC Courses

Application
Algorithm and Data Structure | E5EEf/EREN

Programming Language/Compiler EFRZT/RmERAR =E—1]
Operating System/Virtual Machines EAER S/ BN EEEE :

Instructio Set Arhitecture (ISA) i+ ESHNSERE fi}%%%

Microarchitecture HEISE

Gates/Register-Transfer Level (RTL) HFIZhE %T;&%

Analog/Digital Circuits EEpkERER e

Electronic Devices RS 5,
Physics

MI™X LR | it B R RSAEARHRERINET , BRiFEdi)
{(EAA BRIEIER AT HINEIRE R BN BRER.

2024/9/13 8

SR TREIEE
I. EifhiRES III. RiEMAITERE

® K A ® 471 3% 2 F 89 F A 5k
— L MREL. HERD. RIS . — 8RR NZE. DFhh=. XIME. 5F
® it HhuAt 5 A A £MF BFUHE. .
— C/C++/Fortran/Python/REIRIEIES O 4N A F 89 % R skt frit B &
—ITEINARE. FUREIMNEE. BIERR.
NI E

nSEEH
o HF B AL Y E IR ERAREHG? -

=ilHabl https://www.zhihu.com/question/33576416
II' @JEE&VI‘-% ® Introduction to Parallel Computing
o= ‘]'i ﬁ'g 1+ -ﬁ‘ ;"‘é #‘J Tutorial -
— ZIZAMEER GPUELSMRET EIRE(HEEH https://hpc.11lnl.gov/documentation/tutoria
2 2= Ny 9 ls/introduction-parallel-computing-
O AT mAE AR B tutorial
—OpenMP, MPI, CUDA o ST HFIREK -
O, ITEHLILIEK https://heptagonhust.github.io/HPC-
— Afe s 1S . i " roadma
—HITEXM. REU. BEXF

2024/9/13

https://www.zhihu.com/question/33576416
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://heptagonhust.github.io/HPC-roadmap/

Today

Integrated Circuit Design Register Transfer Level (RTL) Desngn
100 Modules/ IC 1K~10K Cells/Module
0.25M~20G Devices (100K Devices)

MOSFET Structurs

+2.9V #1 . \ I ‘
R st _| R - —
Gate —0| #
We are #2 GND l Gete Level Design

here ‘ Transistor Physical Layout ’ A ej @ ' ti)
A
B c a:%AB Clk ﬂegism
— G v
'. O+ 3 1 =
19 001

O Cus s Cot S
Scheme for Circuit Level Design Register Transfer Level (RTL) Design
Representing Information (Transistor Level Design) 2~16 Gates/Cell
(2~8 Devices/Gate) (16~64 Devices)

2024/9/13 10

Outline

How do we represent information in a
computer?

Integer Data Types

2’ Complement Integers

Binary-Decimal Conversion

Operations on Bits: Arithmetic and Logical

Other Representation

Outline

How do we represent information in a
computer?

L Integer Data Types

2" Complement Integers

Binary-Decimal Conversion

Operations on Bits: Arithmetic and Logical

ol ol =1 .

Other Representation

5 Senses of Human

m Sight
® Image,picture,photo,vedio,..
B Hearing
® Sound, voice, speech,music,..
B Touch
® Shape,soft,hard,hurt,numb,..
B Taste
® Sour ,sweet,bitter,spicy,salty,..
®m Smell

® Sweet,smelly, .. to record by number, data, words,
symbols, text, language,

2024/9/13 13

What kinds of information do we need to represent?

B Kinds of Information
® Numbers - natural number, integers, positive/negative integers,

integers/decimals, real, complex, rational, irrational, signed,
unsigned, floating point,

® Text - characters, strings,

® Logical - true, false

® Images - pixels, colors, shapes,

® Sound - sound of talk, sound of sing,

® Video - a series of images

® Instructions - plus(+), minus(-), times (*) ,divided by (/) ,

o ..

® Data type: representation and operations within the computer

We’ Il start with numbers...

2024/9/13 14

Number Notation

L Hms L

= 1) @ W) @) me Kz Lo

b HF

100 ‘-.‘f'ﬁg(m 1 |- e

EE NI

|2 (1))= (e 182 LR ey

HigOd

) Mom P DF-8)

Inscriptions on oracle bones

(AEXLEAF)

Counting rod(&§%)

T

2024/9/13 15

Number Notation

B Non-positional notation(like to counting rod)
® Could represent a number (“5”) with a string of ones (“11111")

problems?

\!

. o
L, »

» 11111

2024/9/13 16

Number Notation

B Weighted positional notation
®decimal numbers (denary numbers): “329”
®“"3” is worth 300, because of its position(with place wvalue 100),
® while “9” is only worth 9, because of its position(with place value
1)
329

/1N
102 10" 10Q0°

3x100 + 2x10 + 9x1 = 329

Denary numbers
base is 10,
place value according its position

2024/9/13 17

Denary numbers - base ten

m (5346),,
g 2ce value 103=1000 | 102=100 10'=10 100=1
Digit 5 3 4 6
Product of digit
and place value 5x1000=5000 3x100=300 4x10=40 6x1=6

(5346),, = 5x1000+3x100+4x10+6x1

2024/9/13

18

How do we represent data in a computer?
Great Idea from Ancient Chinese Philosophy

All things come into being, all things come into nothing

X FRIEFE, BEFE (BF-O+E)

== ()
/ a\u AR
%“| nl® BINEAR,
MR/ \3 |

N NomEm.

2024/9/13 = 20

How do we represent data in a computer?

mAt the lowest level, a computer is an electronic machine.

®works by controlling the flow of electrons

mEasy to recognize two conditions:
®presence of a voltage - we’ll call this state “1”

® absence of a voltage — we’ll call this state “0”

mCould base state on value of voltage, but control and detection circuits

more complex.

® compare turning on a light switch to measuring or regulating voltage

mWe’' |l see examples of these circuits in the next chapter.

2024/9/13 21

Simple Switch Circuit

@ Switch open:
®No current through circuit

®Light is off

| + OV ., is +2.9V
™ Switch closed:
2.9\/ \/out ® Short circuit across switch

Current flows

®
® Light is on
® V_ . is 0V

Switch-based circuits can easily represent two states:
on/off, open/closed, voltage/no voltage.

2024/9/13 22

Computer is a binary digital system

Digital system: Binary (base two) system:
* finite number of symbols has two states: 0 and 1
Digital Values » ‘G lllegal g
— —
Analog Values » 0 0.5 2.4 2.9 Volts

Basic unit of information is the binary digit, or bit.

Values with more than two states require multiple bits.

®A collection of two bits has four possible states:
oo, 01, 10, 11

O®A collection of three bits has eight possible states:
ooo, o001, 010, 011, 100, 101, 110, 111

@A collection of n bits has 2” possible states.

2024/9/13 23

N-type MOS Transistor

BMOS = Metal Oxide Semiconductor
® two types: N-type and P-type

BN-type

Gate = 1

®when Gate has positive voltage,

short circuit between #1 and #2 %

(switch closed)

®when Gate has zero voltage,

open circuit between #1 and #2 2

(switch open) Terminal #2 must be
connected to GND (0V).

2024/9/13 24

P-type MOS Transistor

mP-type is complementary to N-type

®when Gate has positive voltage,

open circuit between #l1 and #2

Gate = 1

(switch open) Terminal #1 must be
connected to +2.9V.

®when Gate has zero voltage,

short circuit between #1 and #2

(switch closed)

2024/9/13 25

Logic Gates

B Use switch behavior of MOS transistors to implement logical functions: AND, OR,
NOT.

m Digital symbols:

®recall that we assign a range of analog voltages to each
digital (logic) symbol

Digital Values » “0” lllegal _—"

| l —1
Analog Values » 0 0.5 2.4 2.9 Volts

®assignment of voltage ranges depends on electrical properties
of transistors being used

®typical values for "1": +5V, +3.3V, +2.9V, +1.1V for purposes
of illustration, we'll use +2.9V

2024/9/13 26

Binary numbers - base two

m(101110), 10 1110
Available digit 0,1
Place value 25=32 @ 24=16 @ 23=8 22=4 21=2 20=1
Digit 1 0 1 1 0
Product of digit and 30 0 8 4 o 0
place value

(101110) , =1x32+0x16+1x8+1x4+1x2+0x1 =(46),

(11110100), = 1x128+1x64+1x32+1x16+0x8+1x4+0x2+0x1=(244),,
(2790) 10 = (?) 2

(5346),, = (?),

2024/9/13

27

Within the Computer: Everything is a Number.

B Numbers within the Computer

® Base 10 #s: Dec(imal)

- Digits: ol1l2l3l4l516l7I8l9

® Base 2 #s: Bin(ary)

— Digits: 0,1

® Base 8 {#s: Oct(al)

- Digits: ol1l2l3l4l516l7

® Base 16 #s: Hex (adecimal)

2024/9/13

- Digits: ol1l2l3l4l516l7I8l9IAlBICIDIEIF

Dec(imal)
00

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

mm U N ® > © 00 N O UV A WN KR O

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

28

Hexadecimal Notation

mIt is often convenient to write binary (base-2) numbers
as hexadecimal (base-16) numbers instead.

® fewer digits -- four bits per hex digit

® less error prone -- easy to corrupt long string of 1’s and 0’s
Binary Hex |Decimal Binary Hex | Decimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

011101010001111010011010111

Converting from Binary to Hexadecimal

mEvery four bits is a hex digit.
® start grouping from right-hand side

2024/9/13

011101010001111010011010111

A

3 A 8 F 4 D 7

This is not a new machine representation,
just a convenient way to write the number.

31

BIG IDEA: Bits can represent anything!!!

B Characters?
® 26 letters = 5 bits (2° = 32)
® upper/lower case + punctuation (%) = 7 bits (in 8) (“ASCII”)
® standard code to cover all the world’s languages = 8,16,32 bits
(“Unicode”) www.unicode.com

B Logical values?
® 0 - False, 1 - True

m colors?
® Ex: Red(00) ,Green(01) ,Blue(1l1l)

B locations / addresses?
B commands?

MEMORIZE: N bits & at most 2N things

2024/9/13 32

http://www.unicode.com/

Within the Computer: Everything is a Number.

m Bit(BInary digiT)
® 1Bits=2things;
® 2Bits=4things;
® 4Bits=16things;
® 8Bits=256things

H Byte
® 1Byte=8Bits
® A byte is 8 bits

B But numbers usually stored with a fixed size
® 8-bit bytes;
® 16-bit half words;
® 32-bit words;
® 64-bit double words,
® And there are really only two primitive "numbers": 0 and 1 is a "bit"

2024/9/13 33

Outline

How do we represent information in a
computer?

Integer Data Types

2" Complement Integers

Binary-Decimal Conversion

Operations on Bits: Arithmetic and Logical

TEerrge

Other Representation

Unsigned Integers

B Weighted positional notation
® like decimal numbers: “329”

®"“"3” is worth 300, because of its position, while “9” is only worth 9

MSB LSB
3 29 significant 1 O 1 significant
E |\ SN
102 101 100 22 21 20

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 +1x1 =5

2024/9/13 35

Unsigned Integers

B An n-bit unsigned integer represents 27 values: from 0 to 27-1.

22 1 o
0 0 0 0
0o o0 1 1
0 1 o0 2
0 1 1 3
1 0 o0 4
1 0 1 5
1 1 0 6
1 1 1 7

2024/9/13 36

Unsigned Binary Arithmetic

mBase-2 addition - just like base-10!
®add from right to left, propagating carry

carry

) £
10010 10010 1111
+ 1001 + 1011 + 1
11011 11101 10000
10111
+ 111

® Subtraction, multiplication, division,..

Signed Integers

mWith n bits, we have 2" distinct values.
®assign about half to positive integers (1 through 27-1)
and about half to negative (-2»"! through -1)
® that leaves two values: one for 0, and one extra
m Positive integers
®just like unsigned - zero in Most Significant (MS) bit
00101 = 5
B Negative integers
® sign-magnitude (&%) - set top bit to show negative,
other bits are the same as unsigned
10101 = -5

®one’s complement (R#A) - flip every bit to represent negative
11010 = -5

®in either case, MS bit indicates sign: O=positive, l=negative

2024/9/13 38

Three representations of signed integers

- -
Representation il [L | 1’s 2’s GEICECNIENGE Signed 1’s 2’s
Magnitude Complement Complement Magnitude Complement Complement
0 0 0 1 0 0 0 O —0 —15 —16
1 1 1 100 0 1 —1 —14 —15
2 2 2 10010 —2 —13 —14
0 0 0 1 1) 3 3 3 1 0 0 1 1 -3 —12 —13
4 4 4 10100 —4 —11 —12
0 0 1 0 1 5 5 5 1 0 1 0 1 —5 —10 —11
0 0 1 1 0 6 6 6 10110 —6 —9 —10
0 0 1 1 1] 7 7 101 11 —7 —8 —9
8 8 8 11 0 0 0 —8 —7 —8
0 1. 0 0 1 9 9 9 11 0 0 1 —9 —6 —7
0 1 0 1 0 10 10 10 11 0 1 0 —10 —5 —6
0 1. 0 1 1] 11 11 1 11 0 1 1 —1 —4 —5
0 1. 1 0 0 12 12 12 111 0 0 —12 —3 —4
0 1 1 0 1 13 13 13 111 0 1 —13 —2 —3
0 1 1 1 0 14 14 14 1111 0 —14 —1 —2
0 1 1 1 1 15 15 15 11 1 1 1 —15 —0 —1
Signed Magnitude: 1’s Complement:
5-5=5+(-5)=-10 5-5=5+(-5)=-0
00101 (5) 00101 (5)
+ 10101 -5 + 11010 (-5)
11010 (-10) 11111 (-0)

2024/9/13 39

Outline

How do we represent information in a
computer?

Integer Data Types

2’ Complement Integers

Binary-Decimal Conversion

Operations on Bits: Arithmetic and Logical

rErpgee

Other Representation

Two' s Complement Representation

B If number is positive or zero,

® normal binary representation, zeroes in upper bit(s)
m If number is negative,

® start with positive number

®flip every bit (i.e., take the one’s complement)

® then add one
B This representation makes the hardware simple!

00101 () 01001 (9)
@ 11010 (1's comp) (1's comp)
+ 1 & 1

11011 (-5) (-9)

2024/9/13 41

Two' s Complement

B Problems with sign-magnitude and 1' s complement
® two representations of zero (+0 and -0)
®arithmetic circuits are complex
—How to add two sign-magnitude numbers?
e.g.,try2+(-3)
—How to add two one’s complement numbers?
*e.g.,tryd+(-3)
B Two’ s complement representation developed to make circuits easy for arithmetic.
® for each positive number (X), assign value to its negative (-
X) ,such that X + (-X) = 0 with “normal” addition, ignoring carry

out

00101 (5) 01001 (9)
+ 11011 (-5) + (-9)
00000 (0) 00000 (0)

2024/9/13 42

Two' s Complement Shortcut

mTo take the two' s complement of a number:
®copy bits from right to left until (and including) the first “1”
®@flip remaining bits to the left

011010000 011010000
100101111 (1’s comp) (flip) . (copy)
+ 1 . -

100110000 1001h0000
|

2024/9/13 43

Two' s Complement Signed Integers

B MS bit is sign bit - it has weight -2-1,
ERange of an n-bit number: -2"1 through 21 - 1.

® The most negative number (-2°!) has no positive counterpart.

23 22 2t 22 22 20 20 |

o o 0o of o 1 0 0 o -8
0o 0o o0 1| 1 1 0 0 1| -7
0o 0o 1 o 2 1 0 1 o -6
0 0o 1 1| 3 1 0 1 1| 5
o 1 0 o 4 1 1 0 0| -
0o 1 0 1| 5 1 1 0 1| -3
0o 1 1 o 6 1 1 1 0| -2
0 1 1 1| 7 1 1 1 1| -1

2024/9/13 44

Three representations of signed integers

el Signed 1’s 2’s Signed 1’s 2’s
Magnitude Complement Complement Magnitude Complement Complement
0 0 0 1 0 0 0 O —0 —15 —16
1 1 1 100 0 1 —1 —14 —15
2 2 2 10010 —2 —13 —14
0 0 0 1 1) 3 3 3 1 0 0 1 1 -3 —12 —13
4 4 4 10100 —4 —11 —12
0 0 1 0 1 5 5 5 1 0 1 0 1 —5 —10 —11
0 0 1 1 0 6 6 6 10110 —6 —9 —10
0 0 1 1 1/ 7 7 101 11 —7 —8 —9
8 8 8 11 0 0 0 —8 —7 —8
0 1. 0 0 1 9 9 9 11 0 0 1 —9 —6 —7
0 1 0 1 0 10 10 10 11 0 1 0 —10 —5 —6
0 1. 0 1 1] 11 11 11 11 0 1 1 —1 —4 —5
0 1. 1 0 0 12 12 12 111 0 0 —12 —3 —4
0 1 1 0 1 13 13 13 111 0 1 —13 —2 —3
0 1 1 1 0 14 14 14 11 1 1 0 —14 —1 —2
0 1 1 1 1 15 15 15 11 1 1 1 —15 —0 —1
Signed Magnitude: 1’s Complement: 2’s Complement:
5-5=5+(-5)=-10 5-5=54+(-5)=-0 5-5=54+(-5)=0
00101 (5) 00101 (5) 00101 (5)
+ 10101 -5 + 11010 (-5) + 11011 (-5)
11010 (-10) 11111 (-0) 00000 (0)

2024/9/13 45

Q&A

B Suppose we had a 5-bit word. What integers can be represented in two’ s
complement?

A. -32~+431
B. 0~+31

C. -16~+15
D. -15~+16

B Suppose we had a 8-bit word. What integers can be represented in two’ s
complement?

mSuppose we had a 16-bit word. What integers can be represented in two' s
complement?

B Suppose we had a 32-bit word. What integers can be represented in two' s
complement?

Outline

How do we represent information in a
computer?

Integer Data Types

2" Complement Integers

Binary-Decimal Conversion

Operations on Bits: Arithmetic and Logical

ol - Ll sl

Other Representation

Converting Binary (2° s C) to Decimal

1. If leading bit is one, take two’s complement to get a

n| 2"
positive number. =T
2. Add powers of 2 that have “1” in the corresponding bit 1|2
positions. 2|4
3. If original number was negative, add a minus sign. 3|8
4 | 16
X = 011010004, 5|32
= 26425423 = 64+32+8 Eap®?
- 104,,, 7 | 128
8 | 256
Assuming 8-bit 2’s complement numbers. 9512
10 | 1024

More Examples

X = 00100111,,,
= 25+22+421420 = 32+4+2+1

Zn

= 3%%en

X = 11100110y,

-X = 00011010
= 24+23+21= 16+8+2
= 26¢en

X = -26yen

Assuming 8-bit 2’s complement numbers.

W 00 N O U1 A W N IR O

AR
o

16
32
64
128
256
512
1024

Converting Decimal to Binary (2" s C)

First Method: Division

1. Divide by two - remainder is least significant bit. >
n n
2. Keep dividing by two until answer is zero, writing
remainders from right to left. o
3. Append a zero as the MS bit; if original number negative, e
take two’'s complement. 24
38
X = 104,., 104/2 = 52r0 bit0 4|16
52/2 = 26r0 bit1 5|32
26/2 = 13r0 bit2 6| 6a
13/2 = 6rl bit3
6/2 = 3r0 bit4 7128
3/2 = 1rl bit5 8 | 256
X = OIIOIOOOTWO 1/2 = Orl bit 6 9512
10 | 1024

Converting Decimal to Binary (2" s C)

Second Method: Subtract Powers of Two
1. Change to positive decimal number.

2. Subtract largest power of two less than or equal to F=
number. L2
3. Put a one in the corresponding bit position. e
4. Keep subtracting until result is zero. 28
5. Append a zero as MS bit; if original was negative, take 3|8
two’s complement. -
5|32
X = 104, 104 - 64 = 40 bit 6 6| 64
40-32 = 8 bit 5 7 | 128
8-8 = 0 bit 3
X = 011010004, 823
9| 512
10 | 1024

Outline

How do we represent information in a
computer?

Integer Data Types

2" Complement Integers

Binary-Decimal Conversion

Operations on Bits: Arithmetic and Logical

rgererere

Other Representation

Operations: Arithmetic and Logical

m Recall: a data type includes representation and operations.
B We now have a good representation for signed integers, so let’ s look at some
arithmetic operations:
® Addition
® Subtraction
® Sign Extension ! ! !
mWe’ Il also look at overflow conditions for addition.
B Multiplication, division, etc., can be built from these basic operations.
B Logical operations are also useful:

® AND, OR, NOT

2024/9/13 53

Addition

mAs we' ve discussed, 2’ s comp. addition is just binary addition.
® assume all integers have the same number of bits
® ignore carry out

® for now, assume that sum fits in n-bit 2’'s comp. representation

01101000 (104) 11110110 (-10)
+ 11110000 (-16) + (-9)
01011000 (88) (-19)

Assuming 8-bit 2’s complement numbers.

Subtraction

®m Negate subtrahend (2nd no.) and add.

® assume all integers have the same number of bits

® ignore carry out

® for now, assume that difference fits in n-bit 2’s comp.

representation

01101000 (104)
- 00010000 (16)

01101000 (104)
+ 11110000 (-16)
01011000 (88)

Assuming 8-bit 2’s complement numbers.

11110110 (-10)
- (=9)

11110110 (-10)
+ (9)

(-1)

Sign Extension

B To add two numbers, we must represent them with the same number of bits.
mIf we just pad with zeros on the left:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 00001100 (12, not -4)

mInstead, replicate the most significant bit (MSB) -- the sign bit:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 11111100 (still -4)

2024/9/13

56

Overflow

m Recall the represent range of n-bit 2° complement Signed Integers
B For an n-bit number:

-2n-1 < 2n-1_17

mCan we use n-bit 2° complement to represent a value larger than 2n-1-1? Or a value
smaller than -2n-1?

Overflow

mIf operands are too big, then sum cannot be represented as an n-bit 2° s comp
number.

01000 (8) 11000 (-8)
+ 01001 (9) +10111 (-9)
10001 (-15) 01111 (+15)

mWe have overflow if:
®signs of both operands are the same, and
®sign of sum is different.

mAnother test -- easy for hardware:
® carry into MS bit does not equal carry out
01000 (8) 11000 (-8)
+01001 (9) +10111(-9)
10001(-15) 01111 (+15)
AV, AV,

2024/9/13 01 10 58

Logical Operations

mOperations on logical TRUE or FALSE
® two states -- takes one bit to represent:
® TRUE=1, FALSE=0

mView n-bit number as a collection of nlogical values

®operation applied to each bit independently

A B| AANDB A B AORB A| NOTA
0 0 0 0 0 0 0 1

0 1 0 0 1 1 1 0

1 0 0 1 0 1

1 1 1 1 1 1

2024/9/13

59

Examples of Logical Operations

HEAND

®useful for clearing bits
—AND with zero =0

—AND with one = no change

mOR
®useful for setting bits

—OR with zero = no change

—OR withone=1

BENOT

®unary operation -- one argument

®flips every bit

11000101
AND__ 1111
0101
11000101
OR__0000
1100
NOT__11000101
00111010

Hacker’ s Delight

B Hacker's Delight

® by Henry S. Warren, Jr.
® first published in 2002
® fast bit-level and low-level arithmetic algorithms

mBit Twiddling Hack
it lwiadling Hacks |
E | Peanson | oogleZ) B MR RIS, Joitk R EJoshua BlochMEmacs&{EMMA. CHRGIN #Guy
. SRR SteclofX kR %
By Sean Eron Anderson : FenersasrREs oA TRRRR S WosaTARE, vt
i SEME I T RRENER
:

®https://graphics.stanford.edu/~seander/bithacks.html

Hackers ﬁ&ln\fg

Delight R B
Henry S. Warren, Jr. (RHBH2AR)

DA (%) Henry S. Warren, Jr. %

- 2 i

Gecege Boole

Hacker’s Delight

(Second Edition)

(:) BT
China Machine Press

61

2024/9/13

https://graphics.stanford.edu/~seander/bithacks.html

Outline

How do we represent information in a
computer?

Integer Data Types

2" Complement Integers

Binary-Decimal Conversion

Operations on Bits: Arithmetic and Logical

Beereerre

Other Representation

Fractions: Fixed-Point

EHow can we represent fractions?
®Use a “binary point” to separate positive

from negative powers of two -- just like “decimal point.”
®2’'s comp addition and subtraction still work.

—if binary points are aligned n|2n
0 1
—21=0.5 11
: 2|4
22=0.25 3
12'3=0.125 4116
00101000.101 (40.625) 5|32
+.11111110.110 (-1.25) o el
00100111.011 (39.375) e
9512
No new operations -- same as integer arithmetic. 10 | 1024

2024/9/13 63

Fractions: Fixed-Point

mHow can we represent fractions?

® Use a “binary point” to separate positive
from negative powers of two -- just like “decimal point.”
® 2’s complement addition and subtraction still work.
—if binary points are aligned

mExample : 5-bit fraction

fraction Integer

010.10 2.5 (10/2%) 01010
+101.11 -2.25 (-9/2%) + 10111

000.01 0.25 (1/2%) 00001

B A n-bit binary fraction with k fraction bits is equivalent to
the n-bit binary integer divided by 2*

2024/9/13

10

2n

0 e
O D WN-=_20-=_2DNWDHAS

0.0625
0.125
0.25

64

Very Large and Very Small Data

B The LC-3 use the 16bit 2° s complement data type,
mOne bit to identify positive or negative, 15bits to represent the magnitude of the

value. We can express values:

- 215 through 215 -1
(— 32768 through 32767)

How can we represent

very large and very small data?

2024/9/13 65

Very Large and Very Small Data

Large values: 6.023 x 1023 requires 79 bits
Small values: 6.626 x 10-34 requires >110 bits

How can we represent

very large and very small data?

2024/9/13 66

Very Large and Very Small: Floating-Point

Large values: 6.023 x 1023 requires 79 bits
Small values: 6.626 x 10-34 requires >110 bits

Use equivalent of “scientific notation” : F x 2F
Need to represent F (fraction/mantissa), E (exponent), and S(sign).

IEEE 754 Floating-Point Standard (32-bits):
1b 8b 23b

S |Exponent Fraction

N = (=1)° x 1.fraction x 2°P127 1 < exponent < 254

N = (=1)° x 0.fraction x 27'%, exponent = 0

2024/9/13

67

Normalized Form

N = (—1)5X1. fractionx2éxponent—127. "1 < exponent < 254
exponent: 0b0000_0000 < exponent < 0b1111_1111

mSingle-precision IEEE floating point number:

101111110 10000000000000000000000
1 f f

sign exponent fraction

®Sign is 1 - number is negative.

®Exponent field, unsigned integer, excess code, biased
representations: 01111110 = 126 (decimal).

®Fraction is .100000000000.. = .5 (decimal).

Value = -1.5 x 2(126-127) = 1.5 x 2-1 = -0.75.

2024/9/13 68

Floating Point Example

mExample 2.12

0 01111011 000 0000 0000 0000 0000 0000
+ 123 0

1.0%x2123-127- p-4 _ 1
16

mExample 2.13 s
" Vs

: (6+§ i §)=-110.101
- 1.10101x22

- 1.10101x2129-127
110000001 101 0100 0000 0000 0000 0000

2024/9/13 69

Floating Point Example

mExample 2.14

0 10000011 001 0100 0000 0000 0000 0000
+ 1.00101 x2131-127=710010.1=18.5

1 10000010 001 0100 0000 0000 0000 0000
- 1.00101 x2130-127 =.1001.01=-9.25

0 11111110 11111111111111111111111
+ 1.1111... x2254-127= 1 1111... x2127 ~ 2128

2024/9/13 70

Very Small: Floating-Point

BENormalized Form

N = (—1)5X1. fractionx2éxponent—=127. "1 < exponent < 254
exponent: 0b0000_0000 < exponent < 0b1111_1111

BThe smallest positive number that can be represented in normalized form
is

N = 1.00000000000000000000000 x 2-126

2024/9/13 71

Very Small: subnormal numbers

N = (—1)x0. fractionx2~14¢ |, exponent = 0

BThe largest subnormal number is

N=0.11111111111111111111111 x 2-126
BThe smallest subnormal number is

N = 0.00000000000000000000001 x 2-126
— 2-23yD-126—7-149
mExample

0O 00000000 00001000000000000000000O0
2-5 5 2-126 — 9-131

2024/9/13

72

-~ e —v -~ - — = o — b il e ~

Infinities

ENormalized Form
N = (—1)5X1. fractionx2éxponent=127. "1 < exponent < 254
exponent: 0b0000_0000 < exponent < 0b1111_1111
BESubnormal numbers:

N = (—1)x0. fractionx2714¢ | exponent = 0

mSo, what if the exponent is equal to 1111_1111?
®If the exponent field contains 1111 1111, we use the floating point
data type to represent various things, among them the notion of
infinity.
®Infinity is represented by the exponent field containing all 1s and
the fraction field containing all Os.

®We represent positive infinity if the sign bit is 0 and negative
infinity if the sign bit is 1

Floating-Point Operations

mWill regular 2° s complement arithmetic work for Floating Point numbers?

(Hint. In decimal, how do we compute 3.07 x 1012 + 9.11 x 108?)

2024/9/13 74

Other Data Types

B Text strings
® sequence of characters, terminated with NULL (0)
® typically, no hardware support
HImage
® array of pixels
— monochrome: one bit (1/o0 = black/white)
—color: red, green, blue (RGB) components (e.g., 8 bits each)
— other properties: transparency
® hardware support:

—typically none, in general-purpose processors
— MMX -- multiple 8-bit operations on 32-bit word

ESound
® sequence of fixed-point numbers

Within the Computer: Everything is a Number.

2024/9/13 75

How do computers represent text ? -- ASCII Characters

ASCII: Maps 128 characters to 7-bit code.
®both printable and non-printable (ESC, DEL, ..) characters

00 10 20 30 0 |40 50 P |60 70
01 11 21 31 41 A |51 Q |61 a |71 1
02 12 22 32 42 52 R | 62 72
03 13 23 33 43 53 S |63 73 '
04 14 24 34 44 54 T |64 74
05 15 25 35 45 55 U | 65 75 |
06 16 26 36 46 56 V | 66 76
07 17 27 37 47 57 W |67 77 \
08 18 28 38 48 58 X | 68 78
09 19 29 39 49 59 Y |69 79
Oa la 2a 3a 4a 5a Z | 6a 7a
Ob 1b 2b 3b 4b 5b [| 6b 7b
Oc 1lc 2c 3c 4dc 5¢ \ | 6¢ Tc
od 1d 2d 3d 4d 5d] | 6d 7d
Oe le 2e 3e 4de 5e * | 6e Te
of 1f 2f 3f 4f 5¢ | 6f 7€

2024/9/13 76

ASCII (American Standard Code for Information Interchange)

ASCII%
(American Standard Code for Information Interchange ZEHE#FRHEEBZHNR)
S ANE] ASCIITR B 75 ASCITITHL 7 4
| 0001
P b e B e e e P e 7
0000 0 @|WL[\O | E=FFF |16 | P | “P |DLE HARGEREFE | 32 a8 | (|64 |@|8 |P|96]| " |112 p
0001 1@ |*A|soH REFSE | 17 | | *Q | DCL a1 (33| ! 49| 1 |65 | A|81| Q97| a |13 q
0010 2 | @|"B|sTX EXCTE | 18 1 "R |DC2 wEEH 2 (3a| " |50 2|66 B|82|R|9%|b|114| ¢
0011 3 |9 |"C|ETX IECEESE (19 | 1) | 28 |DC3 BwEEH s (35 | H |51 |3 |67|C 8|S |99 ¢ [115] §
0100 4 | ¢ | “D|BOT e | 20 | €| AT |DCY Wil 4 (36| § (52| 4 |[68|D|8a|T|100| d[116] ¢
0101 5 | & | “E |ENQ EA | 21| § | MUK EEMRE |37 (%|53| 5|69 | E |8 |U|101| e [117| u
0110 6 | & | *F|ACK BERE | 22 | mum| "V | SN RETH |38 | & (54| 6 |70 F |86 |V |102| f |118| v
0111 7| e |"G|BEL| \a | | 23 1 AW | ETB Bhhig®R (39| ' (55| 7 |71 | (G| 87 |W|103 g |19 w
1000 8 |@[*H|Bs|b Big | 24 1| 2X|can BEiH 4| (56| 8|72 H|88|X|104] h |120| x
1001 9 | O " |Hr || EAEBE 25| | | AY|EK fR%ER (41|) |57 9|73 | [|89|Y |105 j |121 y
1010 10 AJ|LF | \n #WiT | 26 |—»| 2Z | SUB B 42| % |58 | 3 (74| J |90 | Z |106| j |122] 7
1011 11| G| *K|[VT | W | HhEslFE | 27 [«—| A |ESC| e bt 43|+ (59| ;|75 | K|91 [107| k (123 {
1100 12| Q@ |AL|FF| ¥ | R [28|[| M|FS SRR a4 |, (60| < |76 | |92\ |108|] |124] |
1101 13| PD|*M|cR| W BIZE |29 |<«<>| " |6S BAFRR |45 | - 61| = |77 [M|93|] [109 m |125| }
1110 14 | 7| *N|s0 i 30 | A || RS RO (46| , |62 > |78 | N |94 | N (110| n |126] ~
1111 @8 15| *0 (81 BA |31 WA |us BT (a7 | / |63 2 (719|095 | _ |111| 0 |127] O |Rmsoer
£ FRWAIASCIIFRIATLAR “Alt + /MR EHVEFHRE "R 2t EHEHL

2024/9/13 77

Interesting Properties of ASCII Code

mWhat is relationship between a decimal digit ('0’, '1’, ...)and its ASCII code?

mWhat is the difference between an upper-case letter (‘A’, 'B’, ...) and its

lower-case equivalent (‘a’, 'b’, ...)?

mGiven two ASCII characters, how do we tell which comes first in

alphabetical order?

mAre 128 characters enough? (http://www.unicode.org/)

|No new operations — integer arithmetic and logic. |

2024/9/13 78

How do computers represent image ?

®m Each image has a resolution and a color depth.
® The resolution is the number of pixels wide and the number of pixels

high that are used to create the image.
® The color depth is the number of bits that are used to represent each

color.

Figure 1.3: 8-bit colour 16-bit colour 32-bit colour

B For example, each color could be represented using 8-bit, 16-bit or 32-bit binary
numbers.

B The greater the number of bits, the greater the range of colors that can be
represented.

2024/9/13 79

Converting images to binary

mIf each pixel is converted to its binary value, a data set such as the following could

be created:
001111100
010000010
1700000001
.- 100101001
170000000 1
101000101
100111001
010000010
001111100

2024/9/13 80

How do computers represent sound ?

B Sound is made up of sound waves. When sound is recorded, this is done at set time
intervals. This process is known as sound sampling :

15 15
o /\
7T\ 1\ 7™\
N \ I \ | " /| N\
310 1 \ 210 l/
5] / N\ | © / N\ / I\ /
T \ 7 A ——— g ¢ N—/\1/ ~
851/ N—F \ 11 \/ N 35t/ \/
2 / \—/ \/ Y
/ \[/ \/
/ / \V/4
0
0 1 2 3 4 5 6 7 8 9 070 M 12 0 1 2 3 4 5 6 7 8 9 0 1 12
Time samples Time samples

Tmte 4 2 3 4 5 6 7 8 9 10 11 12

sample

sound 9 43 9 35 4 9 15 9 8 5 8 55

value

81

2024/9/13

LC-3 Data Types

ESome data types are supported directly by the instruction set
architecture.

mFor LC-3, there is only one supported data type:
®16-bit 2’'s complement signed integer

®Operations: ADD, AND, NOT

mOther data types are supported by interpreting 16-bit values as
logical, text, fixed-point, etc., in the software that we write.

2024/9/13 82

2024/9/13

intel.

Intel® 64 and IA-32 Architectures
Software Developer's Manual

Combined Volumes:
1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4

NOTE: This document contains all four volumes of the Intel 64 and IA-32 Architectures Software
Developer’s Manual: Basic Architecture, Order Number 253665; Instruction Set Reference A-Z, Order
Number 325383; System Programming Guide, Order Number 325384; Model-Specific Registers, Order
Number 335592. Refer to all four volumes when evaluating your design needs.

Order Number: 325462-084US
June 2024

83

